Флэш-память. Прошлое, настоящее и будущее

Несмотря на прогресс компьютерных технологий еще всего 3-4 года назад много новых компьютеров (а тем более старых) имели в своем составе флоппи-дисковод. Значительное удешевление оптических приводов и компакт-дисков не смогли заменить 3.5-дюймовые дискеты. Неудобно пользоваться оптическими носителями и все тут. Если считывание данных с них еще особого дискомфорта не вызывает, то вот запись и удаление уже требовали какого-то времени. Да и надежность дисков хоть и многократно выше чем у дискет, все равно через какое-то время, особенно после активного использования, начинает падать. Как всегда в самый неподходящий момент привод от старости (своей или диска) "взбрыкнет" и скажет, что диска на горизонте не заметно.

Вот и продержались дискеты так долго. Носить на них какую-нибудь мелочь вроде документов, либо исходных кодов программ еще вполне можно. Но сейчас и для этого типа данных порой не хватает 1.38 Мбайт свободного места.

Флэш-память

Флэш-память

Решение проблемы замаячило довольно давно. Имя ему флэш-память. Изобретена она была еще в 80-х годах прошлого века, но до реально массовых продуктов добралась к концу 90-х. И причем первое время у нас она была доступна в качестве карт-памяти, а затем в виде MP3-плееров, которые сегодня уже сменили аббревиатуру MP3 на более гордый и обобщающий эпитет "цифровой".

Далее последовало появление USB-флэш накопителей. Процесс их проникновения был по началу не самым быстрым. Начался он с появления решений на 16-64 Мбайт. Сейчас это мизер, но лет 8 назад по сравнению с дискетой это было ого-го как хорошо. А плюс к этому добавлялось удобство работы, высокая скорость чтения/записи и, конечно же, высокая цена. Тогда такие флэшки стояли дороже пишущего оптического привода, которые сами оценивались в сумму порядка $100.

USB-флэшка Kingston на 64 Гбайта

USB-флэшка Kingston на 64 Гбайта

Тем не менее, удобство флэшек оказало решающее влияние на выбор потребителя. В итоге в 2005 году начался настоящий бум. Стоимость флэш-памяти многократно упала, а вместе с ней выросла емкость накопителей. В итоге сегодня за каких-нибудь 2000-2500 рублей можно купить флэшку на 32 Гбайта, тогда как год назад такая стоила чуть ли не вдвое дороже.

Прогресс в области флэш-памяти оказался успешным на столько, что она сегодня уже начинает конкурировать с жесткими дисками. Пока что только в области скорости чтения/записи и времени доступа, а также в энергетических показателях и прочности, но победу по емкости в ближайшие годы также исключать нельзя. Единственное достоинство HDD – это цена. Один "жесткий" гигабайт стоит куда меньше. Но и это лишь вопрос времени.

Итак, флэш-память — это одна из наиболее перспективных компьютерных технологий для хранения данных. Но откуда она такая взялась и каковые ее возможные ограничения и недостатки? Как раз на эти все вопросы и призвана ответить эта статья.

Прошлое

В то время как японские грузчики разгружали одну из первых партий компьютеров Apple, привезенных в холодильниках из-за изображенного яблока на коробках, один японский ученый по имени Фуджио Масуоки трудился в стенах исследовательской лаборатории Toshiba над новым типом памяти. Название ей придумали не сразу, но перспективы изобретения ученому были видны с самого начала.

Фуджио Масуоки

Фуджио Масуоки

Впрочем, с названием определились довольно быстро. Коллега Фуджио, господин Шоджи Ариизуми, предложил назвать новую память "flash". Один из переводов этого слова обозначает вспышку фотоаппарата (да и в принципе любую другую вспышку света). На такую мысль Шоджи навел способ стирания данных.

Представлена новая технология была в 1984 году в Сан-Франциско на мероприятии под названием International Electron Devices Meeting (международная встреча производителей электронных устройств), проведенным институтом IEEE. Заметили ее сразу, причем довольно крупные компании. К примеру Intel выпустила свой первый коммерческий NOR-чип уже в 1988 году.

Пять лет спустя, в 1989 году, Toshiba на аналогичном мероприятии представила технологию NAND-флэш памяти. Сегодня именно этот тип применяется в подавляющем большинстве устройств. Почему именно — расскажем в следующем разделе.

NOR и NAND

NOR-память была представлена несколько раньше поскольку она чуть проще в производстве, да и ее транзисторы по своему строению напоминают обычный MOSFET-транзистор (канальный полевой униполярный МОП-транзистор). Разница заключается лишь в том, что в NOR-памяти транзистор в дополнение к контролирующему затвору имеет второй, "плавающий", затвор. Последний при помощи специального изолирующего слоя может удерживать электроны в течение многих лет, держа транзистор не разряженным.

Схема транзистора NOR-флэш памяти

Схема транзистора NOR-флэш памяти

Вообще свое название NOR-память получила из-за работы как NOR-затвор (NOR – логическая операция НЕ-ИЛИ; принимает значение "истина" только когда на оба входа подается "ложь"). Так что пустая ячейка NOR-памяти заполнена логическим значением "1". Кстати, тоже самое касается и NAND-памяти. И, как не сложно догадаться, она свое название получила из-за схожего принципа работы с NAND-затвором (NAND – логическая операция НЕ-И; принимает значение "ложь" только когда на оба входа подается "истина").

Схема транзистора NAND-флэш памяти

Схема транзистора NAND-флэш памяти

Во что выливается на практике эти самые "НЕ-И" и "НЕ-ИЛИ"? В то, что чип NOR-памяти можно очистить только целиком. Хотя в более современных инкарнациях данной технологии чип разбит на несколько блоков, занимающих обычно 64, 128 или 256 Кбайт. Зато этот тип памяти имеет внешнюю шину адресов, что позволяет побайтное чтение и программирование (запись). Это позволяет не только максимально точно получать доступ к данным напрямую, но и исполнять их прямо "на месте", не выгружая всю информацию в оперативную память. Эта возможность называется XIP (eXecute In Place – выполнение на месте).

Стоит также рассказать о сравнительно новой функции NOR-памяти под названием BBM (Bad Block Management — управление бэд-блоками). Со временем часть ячеек может придти в негодность (точнее станет недоступна их запись) и контроллер чипа, заметив это, переназначит адрес таких ячеек на другой, пока еще рабочий блок. Чем-то подобным занимаются и жесткие диски, о чем мы писали в статье "BAD-секторы. Что это такое, с чем это едят и как от них избавиться".

Таким образом NOR-память хорошо подходит для тех случаев, когда требуется максимальная точность считывания данных и довольно редкое их изменение. Догадываетесь к чему мы клоним? Правильно — к прошивкам различных устройств, в частности BIOS системных плат, видеокарт и т.д. Именно там сейчас NOR-флэш и применяется чаще всего.

Что касается NAND, то с ней ситуация чуть "позаковыристей". Чтение данных может осуществляться только постранично, а запись — поблочно. Один блок состоит из нескольких страниц, а одна страница обычно имеет размер 512, 2048 или 4096 байт. Число страниц в блоке как правило варьируется от 32 до 128. Так что ни о каком исполнение "на месте" речи не идет. Еще одно ограничение NAND-памяти — это то, что запись в блок может осуществляться только последовательно.

В итоге подобная точность (хотя правильнее будет сказать "не точность") порой приводит к ошибкам, особенно если приходится иметь дело с MLC-памятью (об этом типе чуть ниже). Для их коррекции применяется механизм ECC. Он может исправить от 1 до 22 бит в каждых 2048 битах данных. Если исправление невозможно, то механизм определяет наличие ошибки во время записи или стирания данных и блок помечается как "плохой".

Кстати, для предотвращения образования бэд-блоков во флэш-памяти существует специальный метод под названием "wear levelling" (дословно "уровень износа"). Работает он довольно просто. Поскольку "живучесть" блока флэш-памяти зависит от количества операций стирания и записи, а для разных блоков это количество разное, контроллер устройства подсчитывает число этих операций для блоков, стараясь со временем проводить запись на те, что использовались меньше. То есть на те, которые меньше "изношены".

Ну а что касается области применения NAND-памяти, то благодаря возможности более плотного размещения транзисторов, а заодно более дешевого их изготовления, она как раз и используется во всех картах флэш-памяти и USB-флэшках, а также SSD.

SLC NAND чипы Toshiba

SLC NAND чипы Toshiba

Ну и немного об SLC (Single-Level Cell — одноуровневая ячейка) и MLC (Multi-Level Cell — многоуровневая ячейка) ячейках. Изначально был доступен только первый тип. Он предполагает, что в одной ячейке может храниться только два состояния, то есть один бит данных. Чипы MLC были придуманы позже. Их возможности чуть шире — в зависимости от напряжения контроллер может считать с них более двух значений (как правило четыре), что позволяет хранить в одной ячейке от 2 и более бит.

MLC NAND чипы Samsung

MLC NAND чипы Samsung

Достоинства MLC на лицо — при том же физическом размере в одну ячейку помещается вдвое больше данных. Недостатки, впрочем, не менее существенны. Прежде всего это скорость считывания — она естественно ниже, чем у SLC. Ведь требуется создание более точного напряжения, а после этого необходимо правильно расшифровать полученную информацию. И тут же возникает второй недостаток — неизбежные ошибки при считывании и записи данных. Нет, данные не повреждаются, но это сказывается на скорости работы.

Довольно существенный недостаток флэш-памяти — это ограниченное число циклов записи и стирания данных. В этом отношении она пока что не очень хорошо может соперничать с жесткими дисками, но в целом ситуация с каждым годом улучшается. Вот данные по времени службы разных типов флэш-памяти:

  • SLC NAND – до 100 тысяч циклов;
  • MLC NAND – до 10 тысяч циклов;
  • SLC NOR – от 100 до 1000 тысяч циклов;
  • MLC NOR – до 100 тысяч циклов.

Вот вам и еще один недостаток MLC-памяти — она менее долговечна. Ну а NOR-флэш вообще вне конкуренции. Правда, от этого мало толку обычному обывателю — все равно его флэшка вероятнее всего построена на основе NAND-флэш, да еще и на MLC-чипах. Впрочем, технологии не стоят на месте и уже в массы постепенно идет NAND-флэш с миллионым циклом записи и стирания данных. Так что со временем эти параметры станут для нас мало существенными.

"Карточки"

Разобравшись с типами флэш-памяти теперь перейдем к реальным продуктам на ее основе. Само собой описание микросхем BIOS мы опустим, поскольку большинство читателей они интересуют мало. Также как не имеет смысла рассказывать о USB-флэшках. С ними все предельно просто: подключаются через интерфейс USB, установленные внутри чипы целиком и полностью зависят от производителя. Стандартов для этих носителей никаких нет, если не считать необходимость наличия совместимости с USB.

Зато стандарты требуются для флэш-карт, которые сегодня используются в цифровых фотоаппаратах, плеерах, мобильных телефонах и других мобильных устройствах. Карт-ридер для них имеется в большинстве ноутбуков и нетбуков, а еще такой можно встретить в бытовых DVD (или Blu-ray) проигрывателях, либо автомагнитолах.

Для этих устройств существует одна универсальная характеристика — число поддерживаемых карт памяти. Порой на карт-ридерах можно увидеть гордые надписи "20-в-1" или даже "30-в-1", означающие число поддерживаемых форматов. Но что самое удивительное, принципиально разных массовых форматов всего 6. Все остальные — это их модификации. Вот на этих шести стандартах мы и остановимся далее.

CompactFlash

Формат CompactFlash занимает особое место среди всех остальных форматов карт флэш-памяти. Прежде всего потому, что он был самым первым массовым стандартом. Его представила компания SanDisk в 1994 году. И до сих пор он активно применяется в цифровых зеркальных камерах, а также компьютерах-роутерах и других узкоспециализированных устройствах.

CompactFlash-карты Samsung

CompactFlash-карты Samsung

Самое интересное, что первые CF-карточки были основаны на NOR-чипах производства Intel. Но потом довольно быстро были переведены на NAND-флэш, что позволило снизить стоимость и повысить емкость.

CompactFlash создавался как формат для внешнего хранения данных. Но поскольку 15 лет назад карт-ридеров не было, да и USB только проектировался, CF-карты были созданы на основе спецификаций интерфейса ATA (IDE). Таким образом такая карточка может быть подключена к обычному IDE-разъему или вставлена в слот PC Card через пассивный адаптер. Именно поэтому CompactFlash очень удобно использовать в роутерах и аналогичных устройствах — скорость и большой объем там не требуются, а вот размеры, ударостойкость и малый нагрев куда более актуальны.

Кроме того не составляет труда сделать переходник для интерфейса USB или FireWire. И, что самое интересное, большинство карт-ридеров используют систему ввода/вывода CompactFlash для обмена данными между компьютером и другими форматами: SD/MMC, Memoty Stick, xD и SmartMedia.

Hitachi Microdrive

Hitachi Microdrive

Теперь о различных модификациях стандарта CompactFlash. Изначально такие карточки выпускались в едином "картридже" размером 43х36х3.3 мм. Он применяется и сегодня. Но когда был представлен однодюймовый винчестер IBM Microdrive, то был добавлен второй форм-фактор с размерами 43х36х5.0 мм. Таким образом первый стал называться CF Type I, а второй — CF Type II. После того как выпуск Microdrive (и его аналогов) был остановлен актуальность CF Type II сошла на нет.

Имеется у CompactFlash еще несколько ревизий. Их необходимость возникла по мере роста скоростей чтения/записи, а также объема. Так ревизия 2.0 повысила максимальную скорость до 16 Мбайт/с. Позже появилась ревизия 3.0, увеличившая это значение до 66 Мбайт/с. Ну и самая последняя версия 4.0/4.1 позволяет вести обмен данными на скорости до 133 Мбайт/с. Последнее значение соответствует стандарту UDMA133, который также уже теряет свою актуальность.

32 Гбайт CFast-карта Pretec

32 Гбайт CFast-карта Pretec

На смену четвертой ревизии уже подготавливается... нет, не новая ревизия — новый формат - CFast. Его главное принципиальное отличие — использование интерфейса SerialATA вместо IDE. Само собой это полностью перекрывает обратную совместимость с прежним типом разъема, зато увеличивает максимальную скорость до 300 Мбайт/с и возможность наращивания объема куда больше 137 Гбайт. Заметим, что для обмена данными CFast использует семь контактов, как и обычный SATA-интерфейс. Зато питание подается через 17 контактов, тогда как у SATA-устройств их 15. Так что напрямую подключить CFast-карту к материнской плате не получится, придется использовать переходник. Появится такие карточки должны уже в этом году. В январе на CES 2009 уже были продемонстрированы первые образцы емкостью 32 Гбайта.

Теперь остается рассказать о скорости обмена данными и доступных на сегодняшний день объемах карт CompactFlash. Скорость у CF-карточек (да и у остальных накопителей флэш-памяти, кроме SSD, тоже) измеряется точно так, как и у CD-дисков. То есть 1х соответствует 150 Кбайт/с. На самых быстрых представителях красуются надписи 300х, что соответствует есть 45 Мбайт/с. В принципе не мало, но и до жестких дисков на пару с SSD далеко. Но со временем скорость будет только возрастать.

Ну а что касается объема, то за все время были выпущены карты CompactFlash емкостью от 2 Мбайт до 100 Гбайт. Сегодня наиболее распространены варианты от 1 до 32 Гбайт. Впрочем, в продаже уже доступны версии на 48, 64 и 100 Гбайт, хотя они пока что довольно редки. Пока что формат CompactFlash предлагает самые емкие карты флэш-памяти. Но зато другие могут предложить иные преимущества. О них читаем далее.

SmartMedia

Вторым массовым форматом флэш-карт стал SmartMedia. Он был представлен на год позже CompactFlash — летом 1995 года. Собственно, он и создавался как конкурент CF. Что SmartMedia мог предложить? Прежде всего меньшие размеры. А если быть еще точнее, то только меньшую толщину — всего 0.76 мм; ширина и длина таких карточек была 45х37 мм, тогда как у CompactFlash эти параметры почти такие же - 43х36 мм. Надо отметить, что в плане толщины SM пока еще не превзошел ни один другой формат. Даже сверхкомпактные карты microSD "пожирнее" — 1 мм.

SmartMedia-карта

SmartMedia-карта

Подобного показателя удалось достигнуть благодаря изъятию чипа-контроллера. Он был перенесен в карт-ридер. Да и внутри самой SM-карты по началу мог размещаться один NAND-чип, по потом, по мере совершенствования технологии, их там стало больше.

Но отсутствие контроллера внутри карточки имеет определенные минусы. Во-первых по мере роста объема и выхода новых моделей носителей приходилось обновлять прошивку карт-ридера. Да и не всегда эта операция была доступна, если карт-ридер был совсем уж старым. Также со временем началась путаница с рабочим напряжением карт SmartMedia. Изначально оно было 5.0 В, а потом 3.3 В. И если карт-ридер не поддерживал одно из них, то с такими картами он работать не мог. Более того, при вставке карточки на 3.3 вольта в 5.0-вольтовый карт-ридер она могла повредиться или сгореть.

Во-вторых для формата SmartMedia невозможно использование метода подсчета уровня износа блоков флэш-памяти (метод wear levelling мы описали в прошлом разделе). А это потенциально угрожает сократить срок службы карты памяти.

Впрочем, все это не помешало довольно долго использовать SmartMedia в качестве основного формата для цифровых камер — в 2001 году его поддерживало до половины таких устройств на рынке, хотя тогда и рынок этот был куда поскромнее сегодняшнего. В других цифровых устройствах вроде плееров, КПК или мобильных телефонов SmartMedia себя на нашел. Да и производители камер стали отказываться от SM. Фотоаппараты становились все меньше и малой толщины этих карточек уже было недостаточно. Ну и второй существенный минус — рост потребности в большей емкости. Карты SmartMedia достигли объема всего 128 Мбайт. Планировались варианты на 256 Мбайт, но их так и не выпустили.

Адаптер FlashPath

Адаптер FlashPath

А вообще SmartMedia задумывался как замена для 3.5-дюймовых флоппи-дискет. Для них даже был выпущен специальный адаптер под названием FlashPath. Его представили в мае 1998 года и через год их было продано миллион штук. Разработан он был компанией SmartDisk, которая, кстати, выпускала аналогичные адаптеры и для карт MemoryStick и SD/MMC.

Самое удивительное, что работать FlashPath может с любым флоппи-дисководом, отменным логотипом "HD" (High-Density — высокая плотность). Короче подходит любой, который читает 1.44 Мбайт дискеты. Но есть одно "но". Без него никак не обойтись. А тут их даже два. Первое — для распознания FlashPath-адаптера и карточки внутри него требуется специальный драйвер. И если его под нужную ОС не имеется, то она в пролете. Так что загрузится с такой дискеты уже не получится. Второе "но" — скорость работы. Она не превышает таковую при работе с обычной дискеты. И если 1.44 Мбайт можно было скопировать или записать чуть больше чем за минуту, то на 64 Мбайта уйдет больше часа.

Карт-ридер для SmartMedia-карт

Карт-ридер для SmartMedia-карт

Сегодня формат SmartMedia можно назвать мертвым. Некоторые карт-ридеры все еще поддерживают работу с ним (особенно самые понтовые а-ля "все-в-1"), но эта совместимость просто не актуальна. Хотя, конечно, определенную лепту в развитие флэш-технологий этот стандарт внес.

MMC

Формат MMC был представлен третьим по счету в 1997 году. Его разработкой занимались SanDisk и Siemens AG. Аббревиатура MMC расшифровывается как MultiMediaCard, что сразу говорит предназначении стандарта — цифровые мультимедийные устройства. Именно там MMC чаще всего и применяется.

В принципе MMC очень сильно связан с SD, особенно их первые версии. Тем не менее, они разошлись в своем развитии и сегодня второй является наиболее распространенным. Так что о нем мы расскажем в следующем подразделе.

MMC-карта

MMC-карта

MMC в отличие от CompactFlash и SmartMedia имеет более компактные размеры. В плане длины и ширины: 24х32 мм. Толщина карточек MMC составляет 1.4 мм, что примерно в два раза больше, чем у SM. Но этот параметр не так критичен, чем два других измерения.

За все время существования MMC было представлено целых восемь различных модификаций его карт. Первая (просто MMC) для передачи данных использует однобитный последовательный интерфейс, а ее контроллер работает на частоте до 20 МГц. Это означает максимальную скорость не более 20 Мбит/с (2.5 Мбайт/с или примерно 17х). В принципе довольно скромно по современным меркам, но 12 лет назад этого было достаточно.

Карты RS-MMC с адаптером

Карты RS-MMC с адаптером

В 2004 году представили форм-фактор RS-MMC. Приставка RS означает Reduced-Size или "уменьшенный размер". Ее габариты следующие: 24х18х1.4 мм. Можно заметить, что почти в два раза уменьшилась высота. В остальном это была точно такая же MMC-карта памяти. Но для ее установки в карт-ридер необходимо использовать механический адаптер.

Карты DV-MMC

Карты DV-MMC

Довольно краткоживущим оказался формат DV-MMC (DV означает Dual-Voltage – двойное напряжение). Такие карты могли работать на стандартном напряжении 3.3 В и на пониженном 1.8 В. Нужно это для экономии энергии. Тут явно прослеживается ориентация на мобильные устройства. Но DV-MMC карточки быстро свернули в связи с появлением форматов MMC+ (или MMCplus) и MMCmobile.

Карта MMC+

Карта MMC+

Карта MMCmobile

Карта MMCmobile

MMC+ и MMCmobile довольно существенно отличались от оригинальной спецификации MMC и представляли собой ее четвертую версию. Впрочем, это не мешало им сохранить полную обратную совместимость со старыми карт-ридерами и устройствами, но для использования их новых возможностей требовалось обновление прошивки. А возможности эти были следующими. К однобитному интерфейсу обмена данными добавились 4- и 8-битные. Частота контроллера могла быть от 26 до 52 МГц. Все это поднимало максимальную скорость до 416 Мбит/с (52 Мбайт/с). Оба этих формата поддерживали работу с напряжением 1.8 или 3.3 В. По размерам они не отличились от MMC и RS-MMC, соответственно MMCplus и MMCmobile.

Карта MMCmicro

Карта MMCmicro

Позднее появился самый маленький MMC – MMCmicro. Размеры карточки были 14х12х1.1 мм. В основе этого формата лежал MMC+ с некоторыми ограничениями. В частности из-за отсутствия дополнительных контактов (у MMC их 7, у MMC+ - 13) интерфейс обмена данными не поддерживал 8-битную передачу данных.

Карта miCard

Карта miCard

Имеется еще такой не совсем обычный формат как miCard. Его представили летом 2007 года с целью создать универсальную карту, которую можно вставлять как в карт-ридер SD/MMC, так и в разъем USB. Первые карточки должны были иметь емкость 8 Гбайт. Максимум же достигает 2048 Гбайт.

Ну и последний — это SecureMMC. Он также основан на спецификации версии 4.х, что использована в MMC+. Его главная возможность — поддержка DRM-защиты. Кстати, именно этим изначально и отличался формат SD от MMC. SecureMMC – это попытка конкуренции с SD. Так что переходим к этому стандарту.

SD

Формат SD (Secure Digital) на сегодняшний день является наиболее популярным. Он и его модификации используются везде: в цифровых плеерах и фотоаппаратах (даже в зеркальных), в КПК и мобильных телефонах. Вероятно причина этого заключается в его постоянной поддержке и развитии со стороны многих компаний.

Карты Secure Digital

Карты Secure Digital

Представлен же SD был в 1999 году компаниями Matsushita и Toshiba. Полноразмерная карточка Secure Digital по своим габаритам такая же, как и MMC – 32x24x2.1 мм. Большая толщина объясняется наличием блокирующего от записи ключа. Впрочем, спецификация SD позволяет делать карты и без оного (они называются Thin SD), тогда тощина снижается до 1.4 мм.

Изначально выход SD ставил своей целью конкуренцию с MemoryStick (о нем рассказывается ниже), который поддерживал DRM-защиту медиа-файлов. Тогда компании-разработчики ошибочно предположили, что гиганты медиа-индустрии так насядут на онлайн-магазины, что все файлы будут защищены DRM. Вот и решили подсуетиться.

В основу Secure Digital легли спецификации MMC. Именно поэтому карт-ридеры SD запросто работают с MMC. Почему не наоборот? Для оберегания контактов от износа у карт SD они были несколько утоплены в корпус. Поэтому контакты карт-ридера, нацеленного только на работу с MMC, просто не достанут до контактов SD-карты.

Карты miniSD

Карты miniSD

В плане разнообразия форматов SD не менее "скромный", чем его предшественник. Прежде всего стоит отметить, что было представлено еще два форм-фактора: miniSD (20х21.5х1.4 мм) и microSD (11x15x1). Последний изначально был создан SanDisk и назывался как T-Flash, а затем как TransFlash. А после его адаптировала в качестве стандарта ассоциация SD Card Association.

Карта microSD

Карта microSD

Остальные различия касаются емкости карточек. И тут есть определенная путаница. Началась она еще с первого поколения карт, которые достигли объема 2 Гбайта. SD-карта идентифицируется 128-битным ключом. Из них 12 бит используются для обозначения числа кластеров памяти и еще 3 бита для обозначения числа блоков в кластере (4, 8, 16, 32, 64, 128, 256 или 512 — итого 8 значений, что соответствует трем битам памяти). Ну а стандартный размер блока для первых версий составлял 512 байт. Итого 4096х512х512 дает 1 Гбайт данных. Приплыли.

Когда "сверху" недостаток емкости стал поджимать появилась версия 1.01 спецификации, позволявшая использовать дополнительный бит для дополнительного определения объема блока — он теперь мог быть 1024 или 2048 байт, а максимальная емкость соответственно выросла до 2 и 4 Гбайт. Но вот незадача — старые устройства могли некорректно определять размер новых карт памяти.

32 Гбайт карты SDHC Class 6 от Panasonic

32 Гбайт карты SDHC Class 6 от Panasonic

В июне 2006 года появилась новая редакция стандарта — SD 2.0. Ему даже новое имя дали — SDHC или Secure Digital High Capacity (Secure Digital высокой емкости). Название говорит само за себя. Основное нововведение SDHC – возможность создания карточек объемом до 2 Тбайт (2048 Гбайт). Минимальная граница в принципе не ограничена, но на практике SDHC-карты имеют объем от 4 Гбайт. Примечательно, что искусственно ограничена максимальная граница — 32 Гбайт. Для более емких карт предлагается использовать стандарт SDXC (о нем ниже), хотя несколько производителей представили SDHC на 64 Гбайта.

Стандарт SD 2.0 использует для определения размера 22 бита данных, но четыре из них зарезервированы для будущего использования. Так что карт-ридеры, изначально не приспособленные для работы с SDHC, не смогут распознать новые карты памяти. Зато новое устройства запросто узнают старые карточки.

Вместе с анонсом формата SDHC появилась идентификация по скоростным классам. Их существует три варианта: SD Class 2, 4 и 6. Цифры эти обозначают минимальную скорость обмена данными для карточки. То есть карта с SD Class 6 обеспечит скорость минимум 6 Мбайт/с. Ну а верхняя граница естественно не ограничена, хотя пока что ситуация с картами SD обстоит примерно так же, как и с CompactFlash – самые быстрые представители достигли скорости 300х или 45 Мбайт/с.

16 Гбайт карта SDHC Class 2 от SanDisk

16 Гбайт карта SDHC Class 2 от SanDisk

Стоит добавить, что модернизации подверглись и миниатюрные форм-факторы. Про miniSDHC и microSDHC никто не забыл. Правда, попадаются в продаже в основном первые карточки. Сегодня их максимальный объем достиг уже 16 Гбайт, а на подходе 32 Гбайт варианты.

32 Гбайт карта SDXC от Pretec

32 Гбайт карта SDXC от Pretec

Ну и самая последняя новинка — стандарт SDXC. Назвали ли его версией 3.0 или нет, нам так выяснить не удалось. Однако от SDHC он отличается не столь значительно. Прежде всего для него сняли искусственное ограничение на максимальный объем, который теперь может достигать 2 Тбайт. Максимальная скорость обмена данными была повышена до 104 Мбайт/с, а в будущем обещают поднять ее до 300 Мбайт/с. Ну и в качестве основной файловой системы избрали exFAT (о ней рассказано ниже), тогда как SDHC довольствуется в большинстве случаев FAT32. Первые карточки SDXC уже были анонсированы и они имеют емкость 32 или 64 Гбайта. Но продуктов с их поддержкой еще потребуется обождать какое-то время.

Wi-Fi адаптер в формате SDIO

Wi-Fi адаптер в формате SDIO

Собственно о карточках SD все. Но в рамках этого стандарта выпустили еще несколько интересных вещей. К примеру, спецификацию SDIO (Secure Digital Input Output). Согласно ей используя форм-фактор и интерфейс карт SD можно создавать такие устройства как GPS-ресиверы, контроллеры Wi-Fi и Bluetooth, модемы, FM-тюнеры, Ethernet-адаптеры и др. То есть слот SD в этом случае служит неким аналогом USB.

1 Гбайт SD Plus от SanDisk

1 Гбайт SD Plus от SanDisk

SanDisk отличилась картами SD Plus, в которые сразу интегрирован USB-коннектор. Довольно интересную разработку представляет собой Eye-Fi. Это карта памяти со встроенным контроллером Wi-Fi. Последний может передавать данные с карточки на любой компьютер. Таким образом нет нужды даже извлекать ее из фотоаппарата или телефона.

2 Гбайт карты Eye-Fi

2 Гбайт карты Eye-Fi

Итого на сегодняшний день формат Secure Digital является самым популярным и быстрорастущим. Ему пока что пытается противостоять Sony со своими Memory Stick, но выходит у нее это плохо.

Memory Stick

Компания Sony известна своей нелюбовью к большинству форматов и стандартов, что не были разработаны ею. Оно и понятно — с них лицензионных отчислений не получишь. Так в итоге появились и DVD+R/RW и Blu-ray и карточки Memory Stick. Представленные в октябре 1998 года они до сих пор распространены только среди продукции Sony. Да и их выпуском занимается по большому счету только Sony и немного SanDisk. Итог этого закономерен: сравнительно слабая распространенность и более высокая цена, чем у других флэш-карт аналогичного объема.

128 Мбайт карта MemoryStick

128 Мбайт карта MemoryStick

За все время существования Memory Stick Sony выпустила целых семь модификаций. Причем, в отличие от MMC, все они в ходу. В итоге возникает закономерная путаница, а заодно производители карт-ридеров могут повысить число распознаваемых стандартов ихними продуктами.

Началось все с просто Memory Stick. Это вытянутая карта памяти размером 50х21.5х2.8 мм. Своей формой она чем-то напоминает пластинку жевательной резинки. Отличалась она, как мы писали выше, поддержкой DRM, которая так и не потребовалась. Емкость варьировалась от 4 до 128 Мбайт.

2x128 Мбайт карта Memory Stick Select

2x128 Мбайт карта Memory Stick Select

Со временем этого стало недостаточно, а поскольку обновленного стандарта еще не разработали, был анонсирован формат Memory Stick Select. Это обычная карточка Memory Stick, но внутри нее располагалось два чипа памяти по 128 Мбайт каждый. И между ними можно было переключаться при помощи специального переключателя на самой карте. Не очень удобное решение. Поэтому оно и было временным и промежуточным.

1 Гбайт карта Memory Stick PRO

1 Гбайт карта Memory Stick PRO

С малой емкостью удалось справиться выпустив в 2003 году Memory Stick PRO. Теоретически такая карта памяти может хранить до 32 Гбайт данных, но на практике более 4 Гбайт их не делали. Само собой большинство старых устройств не распознает PRO-версию, но зато новые запросто узнают Memory Stick первого поколения. Еще большую сумятицу вносит подвариант стандарта High Speed Memory Stick PRO. Такими были все Memory Stick PRO емкостью от 1 Гбайта. Понятно, что они могли работать в специальном высокоскоростном режиме. И очень радует, что все они обратно совместимы и с более старыми девайсами, только что скорость падала до обычной.

16 Гбайт карта Memory Stick PRO Duo

16 Гбайт карта Memory Stick PRO Duo

Со временем стало ясно, что потребуется идти по пути уменьшения карточек, а то "пластинки" Memory Stick далеко не везде удобно использовать. Так появились Memory Stick Duo размером 31х20х1.6 мм — чуть меньше Secure Digital. Но вот незадача, эти карты имели в своей основе первую версию стандарта Memory Stick, а вместе с ним и ограничение на максимальный объем. 128 Мбайт для 2002 года как-то уже совсем не солидно. Так и появился Memory Stick PRO Duo в 2003 году. И именно этот стандарт сегодня развивается более всего — уже существуют карты на 16 Гбайт, на подходе 32 Гбайт варианты, ну а теоретический предел по уверениям Sony составляет 2 Тбайта.

4 Гбайт карта Memory Stick PRO-HG Duo

4 Гбайт карта Memory Stick PRO-HG Duo

В декабре 2006 года Sony, совместно с SanDisk, анонсировала новую модификацию своих карт флэш-памяти - Memory Stick PRO-HG Duo. Его главное отличие от других вариантов — более высокая скорость работы. В дополнение к 4-битному интерфейсу обмена данными был добавлен 8-битный. Да и поднялась частота контроллера с 40 до 60 МГц. В итоге теоретический скоростной предел увеличился до 480 Мбит/с или 60 Мбайт/с.

Карта Memory Stick Micro (M2)

Карта Memory Stick Micro (M2)

Ну и следуя последнему писку моды в феврале 2006 года появился формат карточек Memory Stick Micro (или его еще называют M2), с габаритами 15х12.5х1.2 мм — это чуть больше microSD. Их емкость варьируется от 128 до 16 Гбайт, а теоретически может быть 32 Гбайта. Через переходник карта памяти M2 может быть вставлена в слот для Memory Stick PRO, но если ее объем более 4 Гбайт, то могут возникнуть определенные проблемы с распознанием.

Вот такая вот загогулина. Если разобраться, то в принципе и не сложно: Memory Stick – оригинальный формат не самых компактных размеров, Memory Stick PRO – вариант с большей емкостью и скоростью работы, Memory Stick (PRO) Duo — уменьшенная версия карточек, Memory Stick PRO-HG Duo – ускоренный вариант Memory Stick PRO Duo, Memory Stick Micro (M2) – самые маленькие Memory Stick. Теперь можно перейти к самому последнему стандарту — xD.

xD-Picture Card

Компании Olympus и Fujifilm посчитали, что существовавшие в первые годы этого века форматы флэш-карт не соответствуют ихним представлениям об идеальном хранилище данных для фотоаппаратов. Иначе чем объяснить разработку собственного стандарта xD-Picture Card?

512 Мбайт карта xD-Picture Card

512 Мбайт карта xD-Picture Card

Из названия формата следует, что он создан для хранения изображений. Но Olympus выпускает на его основе цифровые диктофоны, а Fujitsu — MP3-плееры. Впрочем, последних устройств куда меньше, чем фотоаппаратов с поддержкой xD. Однако если сравнить суммарный объем продаж цифровых камер Fujitsu и Olympus, то они никак не превзойдут показатели лидеров рынка — Canon и Nikon. А лидеры преспокойно используют CompactFlash в зеркальных камерах среднего и высшего уровней, а в остальных отлично прижился стандарт Secure Digital. Ну а раз распространение у карточек xD не очень большое, то в своем развитии они отстают от наиболее популярных форматов, а к тому же стоят дороже их. Примерно в 2-3 раза, если брать карты одной емкости.

Очевидно, что главная ориентация разработчиков формата xD (кстати, выпуском карт на его основе занимаются Toshiba и Samsung) заключалась в уменьшении размера карты памяти. Ее габариты следующие — 20х25х1.78 мм. Примерно как две Memory Stick Micro.

2 Гбайт карта xD Type M

2 Гбайт карта xD Type M

Емкость самой первой версии карт xD варьируется от 16 до 512 Мбайт. Представлены они были в июле 2002 года. Однако в феврале 2005 года появилось первое обновление, позволившее довести максимальный объем до 8 Гбайт. Новый стандарт назывался xD Type M. Увеличить объем удалось за счет применения MLC-памяти, которая в то же время оказалась более медленной. xD-карты Type M достигли объема 2 Гбайт. И пока что этот предел не преодолен ни Type M, ни более новыми стандартами.

1 Гбайт карта xD Type H

1 Гбайт карта xD Type H

Чтобы решить проблему скорости в ноябре 2005 года представили xD Type H. Этот формат был основан на памяти SLC, раз его выпуск решили прекратить в 2008 году из-за высокой себестоимости. Зато ему на смену в апреле 2008 года был выпущен Type M+. Карты этого формата примерно в 1.5 раза быстрее Type M.

2 Гбайт карта xD Type M+

2 Гбайт карта xD Type M+

Обратная совместимость различных версий форматов xD верна только для самых новых устройств — они запросто распознают более старые версии карточек. А вот старые устройства не обязательно узнают новые карты. Тут примерно такая же ситуация, как и у других стандартов.

Что касается скорости, то, как и в плане объема, xD совсем не блещет. Сегодня средняя скорость чтения Type M+ составляет 6.00 Мбайт/с (40х), а записи — 3.75 Мбайт/с (25х).

Итого формат xD-Picture Card в рознице более дорог, чем SD и CF. Карты памяти достаточно компактны, но их емкость уже не соответствует современным требованиям. Тоже самое касается и скорости работы. Для съемки видео с разрешением 640х480 при 30 кадров в секунду Type M+ еще достаточно. Но вот для сегодняшних зеркальных камер, снимающих кадры разрешением 12-24 МП и видео в формате 720p и 1080p этого явно мало. Тут совсем неплохо иметь карточку на 200-300х. Так что особого смысла в продолжении поддержки и развитии xD мы не видим. Не удивимся также, если вдруг его решат прикрыть, а следующее поколение камер переведут на SD и/или CF.

SSD

Аббревиатура SSD стала появляться в лентах новостей и названиях статей относительно недавно — пару лет назад. Причина этого в том, что массовой эта технология начала становиться только когда для хранения данных все чаще стала использоваться флэш-память, а упомянутые заголовки (и текст) новостей твердили о скором бурном росте этого рынка, попутно обещая вытеснение HDD. По крайней мере из сегмента ноутбуков и нетбуков.

Но самое интересное, что SSD не обязательно есть накопитель на основе флэш-памяти. SSD или Solid State Drive означает твердотельный накопитель. То есть тут важен скорее принцип, чем тип - для хранения данных используется "твердая" память. Память, которая не вращается, не вертится и не прыгает. Так что SSD вовсе не пару лет, а формально лет пятьдесят. Называлась тогда эта технология иначе, но опять же — тут важен принцип. А принцип сохранился.

Gigabyte i-RAM

Gigabyte i-RAM

Сегодня же актуальны два типа SSD: на основе энергозависимой памяти и на основе энергонезависимой. Первые — это те, что используют в своей основе SRAM или DRAM память. Еще их называют RAM-drive. Периодически такие SSD анонсируются производителями как сверхбыстрые носители данных. Некоторые из них даже позволяют самостоятельно наращивать объем, когда на плате банально установлены разъемы для обычных модулей памяти (DDR, DDR2 или DDR3 в самом современном варианте).

Ну а энергонезависимая память — это конечно же флэш. Создавать SSD на ее основе могли уже давно, но объемы такие накопителей были далеки от возможностей жестких дисков, а себестоимость значительно выше. Да и скорость не блистала. Но сегодня эти недостатки постепенно устраняются.

512 Гбайт SSD

512 Гбайт SSD

Первое поколение SSD имело емкость от 16 до 64 Гбайт, а стоили такие "флэшки" сотни и тысячи долларов. Это было примерно два года назад. Сегодня доступны варианты на 64-512 Гбайт при цене $200-1500. До винчестеров далеко, но уже куда лучше. За и на подходе SSD на 1 Тбайт в формате 2.5-дюймового жесткого диска. Напомним, что мобильные HDD пока не превысили объема 500 Гбайт. А настольные только-только добрались до отметки 2 Тбайта. Так что SSD идет вперед прямо-таки семимильными шагами.

Intel X25-M

Intel X25-M

Что касается скорости работы, то она также постоянно растет. Первое поколение SSD несколько отставало от мобильных жестких дисков, но современные накопители уже превзошли его. Достаточно вспомнить представленный в прошлом году SSD Intel X25-M, который имеет скорость чтения 250 Мбайт/с, а записи — 70 Мбайт/с. И стоит он не как полет на МКС — порядка $350 при объеме 80 Гбайт.

PhotoFast G-Monster PCIe SSD

PhotoFast G-Monster PCIe SSD

Конечно, существуют особо скоростные модели от Fusion-IO со скоростью чтения/записи 800/694 Мбайт/с или PhotoFast G-Monster PCIe SSD с 1000/1000 Мбайт/с, но оцениваются они в сумму как небольшой реактивный самолет. Ну и конечно же для обмена данными они используют не SerialATA, а обычный PCI Express x8 — этот стандарт пока еще способен обеспечить требуемую пропускную способность. Кстати, PCI Express x1 активно применяется для подключения SSD в нетбуках. Именно в таком формате выполнены их хранилища данных — в виде небольшой платы PCI-E x1.

Столь высокие скоростные показатели для SSD-накопителей были достигнуты благодаря параллельному считыванию данных сразу с нескольких чипов. К примеру упомянутый выше Intel X25-M работает по принципу RAID-массива уровня 0. То есть один бит пишется на первый чип, второй на второй и так далее. Организовать подобный механизм для обычной USB-флэшки или карты памяти крайне сложно, поскольку в них практически всегда устанавливается только один чип флэш-памяти.

Для увеличения емкости и снижения стоимости в SSD довольно часто используют MLC-память (в том числе и в X25-M). Более дорогие модели оснащаются SLC-чипами. Но если на USB-флэшку или какую-нибудь SD-карточку вы записываете данные сравнительно редко, то на SSD запись ведется непрерывно во время работы. Причем в большинстве случаев вы этого даже не знаете. Современные программы постоянно ведут различные логи; операционная система перемещает в своп-файл малоиспользуемые данные, высвобождая таким образом ОЗУ; даже элементарный доступ к файлу требует записи времени доступа.

Так что по-любому в SSD приходится устанавливать более долговечные чипы. Еще приходится беспокоиться об алгоритмах вычисления уровня износа и перераспределения данных — они должны быть более совершенными, чем у обычных флэшек. SSD-накопители даже имеют дополнительный чип энергозависимой кэш-памяти, как обычный жесткий диск. В кэше находятся данные об адресах блоков и данные об уровне износа. При выключении последние сохраняются на флэш-память.

В любом случае пока что технология SSD-накопителей на основе флэша продолжает бурно развиваться. Она предлагает несколько неоспоримых преимуществ перед HDD:

  • значительно меньшее время доступа к данным;
  • постоянная скорость чтения данных;
  • нулевой уровень шума;
  • большая устойчивость к нагрузкам;
  • меньшее энергопотребление.

На текущий момент остается довести число циклов перезаписи до такого количества, чтобы об этом можно было совсем не беспокоится. Емкость будет расти и без того. Не исключено, что в ближайшие 2-3 года она догонит и даже обгонит жесткие диски. Ну а цена падает сама собой, если технология перспективна, активно продвигается и уровень продаж постоянно растет. Не знаем, сможет ли SSD вытеснить HDD на рынке настольных компьютеров, но на мобильные они уже замахиваются.

Будущее

Собственно мы подошли к концу. Вывод из вышесказанного можно сделать следующий: флэш-память в будущем будет все больше распространяться и совершенствоваться. Пока не ясно, сможет ли она заменить жесткие диски, но задатки к этому у нее имеются. Но тут есть еще одна загвоздка — файловая система.

Современные файловые системы оптимизированы для использования вместе с жесткими дисками. А ведь HDD — это вовсе не SSD по своей структуре. Прежде всего доступ к данным на винчестере осуществляется при помощи LBA-адресации. Блок такого адреса позволяет вычислить на какой пластине, на какой дорожке и в каком секторе расположена запрашиваемая информация. Но вот незадача — у флэш нет пластин, дорожек и секторов. Но есть блоки, поделенные на страницы. Сегодня эта проблема решается трансляцией адресов из одного формата в другой, но куда удобнее было бы, если б все это происходило напрямую.

Еще одна особенность флэш-памяти — запись может осуществляться только в предварительно очищенные блоки. А эта операция занимает определенное время. Вот и неплохо бы очищать неиспользуемые совсем блоки во время простоя.

Современные дисковые файловые системы оптимизированы для минимизации времени доступа к данным — они стараются, чтобы их поиск происходил максимально быстро по диску. Но для флэш-памяти это просто неактуально — доступ ко всем блокам осуществляется одинаково быстро. Ну и не помешает поддержка вычисления уровня износа флэш-чипов со стороны файловой системы.

Так что дело ближайшего будущего — это выпуск новых файловых систем, оптимизированных для работы с флэш-памятью. Такие впрочем уже существуют, но современные ОС плохо их поддерживают. Примечательно, что одной из первых стала FFS2 от Microsoft, которую та выпустила еще в начале 90-х годов.

ОС Linux не отстает от прогресса. Для нее были созданы файловые системы JFFS, JFFS2, YAFFS, LogFS, UBIFS. Отличилась и Sun, разработав ZFS, которая недавно перешла во владение Oracle. Она оптимизирована не только для жестких дисков, но и для флэш-накопителей. Причем как для использования их в качестве основного хранилища, так и как кэша.

Тем не менее, сегодня самой популярной файловой системой для флэшек (не считая SSD) остается FAT и FAT32. Это просто удобнее всего. Они поддерживаются всеми операционными системами, не требуют драйверов. Но и их уже недостаточно для работы. К примеру ограничение на максимальный размер файла (4 Гбайта) уже становится неприемлемым.

Флэш-накопитель, форматированный под файловую систему exFAT

Флэш-накопитель, форматированный под файловую систему exFAT

Впрочем, у Microsoft есть замена — exFAT, ранее известная как FAT64. Как мы уже писали, она выбрана в качестве основной ФС для карт SDXC. Помимо оптимизации под флэш-память она поддерживает файлы размером до 16 экзабайт (16.7 миллионов терабайт), а в одну папку можно записать более 65536 файлов.

Поддерживается exFAT сегодня операционными системами Windows Mobile версии 6.0 и выше, Windows XP SP2 и выше, Windows Vista SP1, Windows Server 2008 и Windows 7 со сборки 6801. Заметим, что в Windows Vista флэш-накопитель на основе exFAT не способен использоваться как кэш в функции ReadyBoost. Соответствующая поддержка появится в Windows 7. Ну а что касается других ОС, то для Linux доступен бесплатный модуль ядра, позволяющий использовать exFAT только для чтения.

Так что наиболее перспективной ОС для флэш-приводов сегодня выглядит ZFS и exFAT. Но обе распространены весьма слабо, хотя у последней есть больше шансов стать популярной. Ее уже выбрали в качестве основной для карт SD последнего поколения и все наиболее популярные версии Windows ее "знают".

В остальном будем ждать дальнейшего наращивания емкости флэшек и снижения их стоимости. Технология эта очень хороша, поэтому мы желаем ей только успеха.

Содержание Одной страницей
Стр. 1. Прошлое
Стр. 2. NOR и NAND
Стр. 3. "Карточки": CompactFlash, SmartMedia
Стр. 4. "Карточки": MMC
Стр. 5. "Карточки": SD
Стр. 6. "Карточки": Memory Stick, xD-Picture Card
Стр. 7. SSD
Стр. 8. Будущее
Комментарии
Добавить комментарий

Введите имя:
Войти от:
или
Ваш комментарий:


Введите код:

E-mail (не обязательно)
Адрес электронной почты не предназначен к показу и будет использован только для уведомлений об ответах



Смартфоны со съемными аккумуляторами 2018-2019 годов
14 смартфонов со съемным аккумулятором и один телефон
15 июля 2019 / 3
Смартфон с каплевидным вырезом - Samsung Galaxy A30
Недорогой современный смартфон без моноброви
22 апреля 2019 / 3
Android 10. Первый взгляд
Что будет в «юбилейной» ОС Google, которая выйдет в 2019 года
29 июля 2018 / 1
Смартфон Huawei с хорошей камерой - Huawei P20
Эффектный флагман со своим лицом
22 июля 2018 / 4
 
 
Анонс Windows 11 состоится 24 июня
Продажи iPhone 12 mini не оправдали ожидания
Будущий iPad Pro получит стеклянный корпус
Sun Valley может выйти уже осенью 2021 года
Samsung приступила к лицензированию Ultra Thin Glass (UTG)
Компания фокусируется на бытовой технике и электромобилях
 
 

Опрос

Какими картами вы пользуетесь?
или оставить собственный вариант в комментариях (14)





Статистика